in

Metaverse, „digital twins” i przyszłość handlu detalicznego

Neal Stephenson (autor książki „Snow Crash” z 1992 r.) i wynalazca terminu „metaverse” nie wiedział, że słowo to będzie miało fundamentalne znaczenie w budowaniu przemysłu wartego miliardy dolarów 30 lat później. Wokół „metaverse” narosło wiele emocji, mimo to wielu sprzedawców już teraz dba o cyfrową obecność zabiegając o klientów zaawansowanych technologicznie.

Najprościej rzecz ujmując, metawersja to wirtualna przestrzeń z rozszerzoną wirtualną rzeczywistością. Wyobraźmy sobie ludzi, miasta i kraje, które istnieją cyfrowo.. Metaverse łączy w sobie moc technologii symulacyjnych, które promowaliśmy przez ostatnie stulecie i buduje z nich wirtualne światy (niemal jak w grach wideo), w które ludzie mogą się zagłębić.

Do metawersum przyłączyli się już sprzedawcy mody. Niektórzy z nich tworzą sklepy, w których użytkownicy mogą ubierać swoje awatary, kupować produkty w wirtualnym sklepie i otrzymywać je z dostawą do domu. Inne firmy zorganizowały Metaverse Fashion Week, podczas którego marki prezentują swoje najnowsze kreacje na wirtualnym wybiegu.

Sprzedawcy żywności chcą otwierać sklepy w metawersum, w których klienci, napełniają koszyki, płacą i otrzymują prawdziwe produkty z dostawą do domu. Jeśli po zakupach użytkownik wirtualnego świata ma ochotę na lunch, może zamówić swojego ulubionego hamburgera z frytkami i także on zostanie dostarczony pod same drzwi. To zysk dla obu stron.

Oprócz korzystania z istniejących platform handlu elektronicznego, metaverse pozwala wybrać się na spacer po tym wirtualnym świecie, odwiedzić sklepy, wybrać produkty, sprawdzić ogłoszenia i oferty, a następnie zamówić wszystko wraz z dostawą. Metawersja staje się kolejną opcją w świecie omnichannel retail.  

Metawersja może być także tyglem dla technologii uczenia maszynowego, takich jak Computer Vision (CV), Natural Language Processing (NLP) i Reinforcement Learning (RL). Coraz więcej firm dostrzega potencjał, jaki niesie ze sobą połączenie technologii głosowych i wizyjnych w procesie podejmowania decyzji przez konsumentów. Jednak sam postęp technologiczny w tej dziedzinie nie przybliży nas do powszechnego korzystania ze sztucznej inteligencji, o ile nie będziemy w stanie wykorzystać tych wrażeń w sposób wystarczająco skoordynowany do podjęcia decyzji.

Metawersum może stać się wirtualnym poligonem doświadczalnym– masową grą wieloosobową, w której możemy tworzyć, trenować i wdrażać bogaty zestaw technologii uczenia maszynowego w celu opracowania nowych możliwości sprzedaży detalicznej i doświadczeń konsumenckich.

Zbuduj, a klienci się pojawią?

Instytucje finansowe i giganci mediów społecznościowych są jednymi z tych, którzy dołączają do sprzedawców detalicznych w wyścigu o swój kawałek tortu jakim jest metawersja. Ale najważniejsze jest to, czy konsumenci będą chcieli korzystać z metawersum? Pamiętajmy, że będziemy musieli poświęcić fizyczny (a nie wirtualny) czas, pieniądze i energię, aby wejść z nią w interakcję. Oczywiście, można to sobie wyobrazić na podobieństwo gry wideo, w której buduje się społeczność z wirtualnymi sąsiadami, ale czy mamy wystarczające zdolności poznawcze, aby prowadzić równoległe życie? Czy nie mamy już do czynienia z przeciążeniem informacyjnym?

Metawersja może nie być przysłowiową „ziemią obiecaną” a marzenia inwestorów o zarabianiu ogromnych sum na wirtualnych zakupach mogą się się nie spełnić.  Mantra „zbuduj to, a klienci sami przyjdą” może się nie zwyczajnie nie sprawdzić. Co zatem co może przyciągnąć użytkowników?

Moim zdaniem, pierwszym krokiem w kierunku uwolnienia metawersum jest możliwość wykorzystania go do (a) podejmowania decyzji i (b) używania go jako syntetycznego świata do generowania danych z uczenia maszynowego (ML). Dopasowanie produktu do rynku należy budować stopniowo, w przeciwnym razie argument o przyswojeniu jej przez klientów stanie się dość naciągany, szczególnie gdy branże zaczną otwierać sklepy w przestrzeni wirtualnej i używać walut cyfrowych lub niezbywalnych tokenów do kupowania/sprzedawania aktywów cyfrowych.

Pierszeństwo digital twins

Kolejnym krokiem na drodze do zbudowania metawersum i spełnienia powyższych warunków „A” i „B” jest cyfrowy bliźniak (ang. Digital twin) będący podzbiorem metawersum. Weźmy mały wycinek świata naturalnego, na przykład sklep detaliczny, i wykorzystajmy uproszczoną metawersję (cyfrowego bliźniaka), aby umożliwić widoczność w czasie rzeczywistym wszystkich zasobów (towarów, pracowników sklepu, przepływów w łańcuchu dostaw itp.).

Następnie należy wykorzystać technologie takie jak CV do pomiaru popytu i podaży w czasie rzeczywistym, zarówno w sklepie stacjonarnym jak i tym wirtualnym. NLP może przesiać tysiące komunikatów i podpowiedzieć, jakie zadania należy wykonać. W ramach dalszego rozszerzenia działań „digital twins” , RL może podejmować decyzje dotyczące nadchodzącej przyszłości.  Dzięki temu kierownicy sklepów będą mieli wgląd w operacje sklepowe w czasie rzeczywistym, co pozwoli podejmować trafniejsze decyzje.

Dlatego też pracujemy nad technologią SmartLens™ Gen II dla handlu detalicznego, która pozwala dostrzec wszystko co istotne dla handlu w Twoim sklepie.

Cyfrowy bliźniak umożliwia nam tworzenie wirtualnych światów i różnych podzbiorów tego samego świata. Co się stanie, jeśli moja sypialnia będzie pomalowana na czerwono, a nie na biało, albo drogi, po których chodzę, będą żwirowe, a nie betonowe?

Na przykład większość algorytmów CV opartych na głębokim uczeniu wymaga tony danych szkoleniowych. Cyfrowy bliźniak (jeśli jest skonstruowany z zachowaniem rygorów ograniczających przesunięcie kowariancji w stosunku do naturalnego środowiska) może dostarczyć nam syntetycznych danych z adnotacjami, np. miliony kilometrów danych dotyczących jazdy dla samokierujących się samochodów lub setek kombinacji dla obiektów w różnych punktach widzenia, np. owoce i warzywa w sklepie będą wyglądały inaczej, jeśli będą oglądane z lewej lub prawej strony, w nocy lub w dzień. Wykorzystując grafikę komputerową, można zlecić algorytmom CV przeanalizowanie wszystkich możliwych konfiguracji wyświetlania owoców i warzyw. Zwrot ku danym syntetycznym obserwujemy także w innych branżach, np. w przypadku algorytmów sieci neuronowych opartych na głębokim uczeniu, nad którymi pracują naukowcy i inżynierowie na potrzeby kamer wizyjnych. Algorytmy RL napotykają czasem trudności gdy np. przypadkowo zmienia się badany przez nie materiał (tekstura, kolor), kierunek światła, warunki oświetleniowe i rozmieszczenie obiektów. Przeniesienie i prowadzenie badań w wirtualnym świcie może pomóc w rozwiązaniu niektórych z tych problemów.

Podsumowując, sukcesywne działania mające na celu zbieranie doświadczeń z wirtualnego świata pozwolą sukcesywnie redukować rozbieżności pomiędzy produktem a potrzebami rynku.

Dr Biswa Sengupta, Technical Fellow i Global Head of Machine Learnings w Zebra Technologies

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany.

Części do smartfonów, czyli sposób na odratowanie swojego telefonu

Części do smartfonów, czyli sposób na odratowanie swojego telefonu

Jak dobrać program kadrowy do potrzeb firmy?

Jak dobrać program kadrowy do potrzeb firmy?